Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Results Phys ; 20: 103673, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-969560

ABSTRACT

This work has considered a mathematical model describing the spread of COVID-19 in a given population. The model comprised 5 systems of equations that take into account different classes describing the impact of COVID-19 in a given population. The time differential operator was replaced with three different types of nonlocal operators. These operators are defined as the convolution of variable order fractal differential operators with different kernels including power law, exponential decay law, and Mittag-Leffler functions. We presented the well-poseness of the models for different differential operators that were presented in detail. A novel numerical scheme was used to solve numerically the system and numerical simulations were provided.

2.
Chaos Solitons Fractals ; 138: 110006, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-605965

ABSTRACT

a mathematical model depicting the spread of covid-19 epidemic and implementation of population covid-19 intervention in Italy. The model has 8 components leading to system of 8 ordinary differential equations. In this paper, we investigate the model using the concept of fractional differential operator. A numerical method based on the Lagrange polynomial was used to solve the system equations depicting the spread of COVID-19. A detailed investigation of stability including reproductive number using the next generation matrix, and the Lyapunov were presented in detail. Numerical simulations are depicted for various fractional orders.

SELECTION OF CITATIONS
SEARCH DETAIL